Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase
نویسندگان
چکیده
Abscisic acid (ABA) inhibits seed germination and the regulation of ABA biosynthesis has a role in maintenance of seed dormancy. The key rate-limiting step in ABA biosynthesis is catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). Two hydroxamic acid inhibitors of carotenoid cleavage dioxygenase (CCD), D4 and D7, previously found to inhibit CCD and NCED in vitro, are shown to have the novel property of decreasing mean germination time of tomato (Solanum lycopersicum L.) seeds constitutively overexpressing LeNCED1. Post-germination, D4 exhibited no negative effects on tomato seedling growth in terms of height, dry weight, and fresh weight. Tobacco (Nicotiana tabacum L.) seeds containing a tetracycline-inducible LeNCED1 transgene were used to show that germination could be negatively and positively controlled through the chemical induction of gene expression and the chemical inhibition of the NCED protein: application of tetracycline increased mean germination time and delayed hypocotyl emergence in a similar manner to that observed when exogenous ABA was applied and this was reversed by D4 when NCED expression was induced at intermediate levels. D4 also improved germination in lettuce (Lactuca sativa L.) seeds under thermoinhibitory temperatures and in tomato seeds imbibed in high osmolarity solutions of polyethylene glycol. D4 reduced ABA and dihydrophaseic acid accumulation in tomato seeds overexpressing LeNCED1 and reduced ABA accumulation in wild type tomato seeds imbibed on polyethylene glycol. The evidence supports a mode of action of D4 through NCED inhibition, and this molecule provides a lead compound for the design of NCED inhibitors with greater specificity and potency.
منابع مشابه
Sesquiterpene-like inhibitors of a 9-cis-epoxycarotenoid dioxygenase regulating abscisic acid biosynthesis in higher plants.
Abscisic acid (ABA) is a carotenoid-derived plant hormone known to regulate critical functions in growth, development and responses to environmental stress. The key enzyme which carries out the first committed step in ABA biosynthesis is the carotenoid cleavage 9-cis-epoxycarotenoid dioxygenase (NCED). We have developed a series of sulfur and nitrogen-containing compounds as potential ABA biosy...
متن کامل9-cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice
Although abscisic acid (ABA) is an important hormone that regulates seed dormancy, stomatal closure, plant development, as well as responses to environmental stimuli, the physiological mechanisms of ABA response to multiple stress in rice remain poorly understood. In the ABA biosynthetic pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is the key rate-limiting enzyme. Here, we report important...
متن کاملA stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea.
Four cDNA clones named CPRD (cowpea responsive to dehydration) corresponding to genes that are responsive to dehydration were isolated using differential screening of a cDNA library prepared from 10-h dehydrated drought-tolerant cowpea (Vigna unguiculata) plants. One of the cDNA clones has a homology to 9-cis-epoxycarotenoid dioxygenase (named VuNCED1), which is supposed to be involved in absci...
متن کاملExpression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance.
Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing ...
متن کاملDoes abscisic acid affect strigolactone biosynthesis?
SUMMARY *Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we ...
متن کامل